A Tropical Tropospheric Source of High Ozone/Low Water Filaments in the Western Pacific Daniel C. Anderson¹, Julie M. Nicely², Ross J. Salawitch^{1,2,3}, Timothy P. Canty¹, Russell R. Dickerson¹, Thomas F. Hanisco⁴, Glenn M. Wolfe^{4,5}, Eric C. Apel⁶, Elliot Atlas⁷, Thomas Bannan⁸, Stephane Bauguitte⁹, Nicola J. Blake¹⁰, Jim Bresch⁶, Teresa L. Campos⁶, Lucy J. Carpenter¹¹, Mark Cohen¹², Mathew Evans¹¹, Rafael P. Fernandez^{13,14}, Brian Kahn¹⁵, Doug E. Kinnison⁶, Sam R. Hall⁶, Neil Harris¹⁶, Rebecca S. Hornbrook⁶, Jean-Francois Lamarque⁶, Michael Le Breton⁸, James D. Lee¹¹, Laura L. Pan⁶, Carl Percival⁸, Lenny Pfister¹⁷, R. Bradley Pierce¹⁸, Daniel D. Riemer⁶, Alfonso Saiz-Lopez¹³, Anne M. Thompson⁴, Kirk Ullmann⁶, Adam Vaughan¹¹, Andrew J. Weinheimer⁶ Numerous field campaigns have noted the prevalence of filaments of high O_3 and low H_2O (HOLW) in the tropical western Pacific (TWP) troposphere. These filaments can drastically alter the chemistry, meteorology, and climate of the region through alteration of the OH budget, suppression of convection, and changes in local radiative forcing. These filaments are often cited as having a dynamical origin, caused by transport from the mid-latitude upper troposphere (mlUT) or stratosphere. Studies attributing the high O_3 to tropical tropospheric processes, namely biomass burning, frequently do not explain the low H_2O . We will show that these filaments were a dominant feature observed during the CONTRAST and CAST campaigns, conducted in the TWP during January and February 2014. Back trajectory analysis connects the observed HOLW filaments to regions of active biomass burning in the tropics. The chemical composition of the filaments confirms this biomass burning origin and suggests that mlUT and stratospheric influence is negligible. We will also show that the low H_2O observed in these filaments is consistent with large-scale subsidence in the tropics. ¹Department of Atmospheric and Oceanic Science, University of Maryland, College Park, USA ²Department of Chemistry and Biochemistry, University of Maryland, College Park, USA ³Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA ⁴NASA Goddard Space Flight Center, Greenbelt, USA ⁵Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, USA ⁶National Center for Atmospheric Research, Boulder, USA ⁷Department of Atmospheric Sciences, University of Miami, USA ⁸School of Earth, Atmospheric, and Environmental Science, The University of Manchester, UK ⁹Facility for Airborne Atmospheric Measurements, Cranfield, UK ¹⁰Department of Chemistry, University of California, Irvine, USA $^{^{11}}$ National Centre for Atmospheric Science, Department of Chemistry, University of York, UK ¹²NOAA Air Resources Laboratory, College Park, USA ¹³Atmospheric Chemistry and Climate Group, Institute of Physical Chemistry Rocasolano, Madrid, Spain ¹⁴National Research Council, FCEN-UNCuyo, UTN-FRM, Mendoza, Argentina ¹⁵NASA Jet Propulsion Laboratory, Pasadena, USA ¹⁶Department of Chemistry, Cambridge University, UK ¹⁷NASA Ames Research Center, Moffett Field, USA ¹⁸NOAA/NESDIS Center for Satellite Applications and Research, Madison, USA